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Abstract 
Apoptosis evasion is a hallmark of human cancer.  
PUMA is a BH3-only Bcl-2 family protein that 
mediates both p53-dependent and independent 
apoptosis. However, its role in tumor suppression 
had not been well established. Our recent work 
provides direct evidence that PUMA plays an 
important role in suppressing intestinal 
tumorigenesis in two mouse models including (i) 
the azoxymethane (AOM)/dextran sulfate sodium 
salt (DSS)-treated mice and (ii) APCMin/+ mice. The 
activities of PUMA appeared to be in the intestinal 
stem cells, and involve both p53-dependent 
response to DNA damage, and p53-independent 
mechanisms triggered by inflammation. Our data 
suggest that the interplay between different 
apoptotic pathways in intestinal stem cells underlie 
the initiation of intestinal carcinogenesis, and 
should be considered in the context of cancer 
prevention and therapy.  
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Introduction 
 The multi-step carcinogenesis process involves 
the accumulation of a series of genetic and 
epigenetic alterations (1, 2). A number of features 
distinguish cancer cells from their normal 
counterparts. Resistance to apoptosis is a hallmark 
of virtually all types of human cancer, and leads to 
increased risk of clonal expansion of cells containing 
neoplastic alterations (3). Colon cancer is perhaps 
the most well studied model that illustrates this  
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multi-step nature (2). Apoptosis, a major mechanism 
regulating turnover of intestinal epithelial cells, is 
progressively inhibited in colon carcinogenesis (4, 5). 
This is in part attributed to frequent mutations in 
tumor suppressors APC (adenomatous polyposis coli) 
and p53, and in oncogenes β-catenin, K-ras, BRAF, 
and PI3K (2). In addition, overexpression of 
antiapoptotic proteins such as Bcl-2, Bcl-xL, and 
survivin are also common in cancer (6). These 
alterations can directly or indirectly suppress 
apoptosis and subsequently drive other tumorigenic 
events leading to cancer (3). However, direct in vivo 
evidence supporting the role of apoptosis in tumor 
suppression, especially in solid organs, is generally 
scarce.  Using mice deficient in the proapoptotic Bcl-
2 family protein PUMA, we demonstrated that both 
p53-dependent and independent apoptosis 
contribute to the suppression of  malignancies in the 
intestinal tract (7). 
 
 
Material and Methods 
 The procedures of animal work and various 
methods for Western blotting, caspase 3 and BrdU 
immunohistochemistry have been previously 
described (7). The HCT 116 and its isogenic p53 
knockout (p53 KO) cells have been previously 
described (8). 
 
 
Results and Discussion 
The role of BH3-only proteins in tumor 
suppression 
 The Bcl-2 family proteins are evolutionarily 
conserved key regulators of apoptosis which include 
both antiapoptotic and proapoptotic members.  
PUMA (p53 upregulated modulator of apoptosis) 
was originally identified as a transcriptional target 
of p53 and a BH3-only protein that induces rapid 
and potent apoptosis in various cancer cells (9-12).  
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Similar to other BH3-only proteins, PUMA serves as 
a proximal signaling molecule which transduces 
death signals via multidomain Bcl-2 family 
members to induce mitochondrial dysfunction and 
caspase activation (13, 14). PUMA primarily acts to 
indirectly activate Bax and/or Bak by relieving the 
inhibition of these proteins by antiapoptotic Bcl-2 
family members (15). PUMA-deficient human or 
mouse cells from various tissue origins including the 
intestinal tract have profound apoptotic deficiencies 
in response to a wide variety of stresses, 
establishing its principle role in promoting apoptosis 
(13, 16-19). 
 The Bcl-2 family proteins are linked to cancer. 
Genetic alterations of Bcl-2, the founding member of 
the family, are responsible for a subset of leukemia. 
Several prosurvival family members, including Bcl-2, 
Bcl-xL and Mcl-1, are frequently overexpressed in 
colon cancer and other human malignancies. In rare 
cases, the proapoptotic member BAX is mutated in 
mismatch repair-deficient colon cancer (20). On the 
other hand, the BH3-only proteins including PUMA 
are not inactivated by mutations in cancer (21, 22).  
Several lines of evidence however suggest that the 
function of PUMA is frequently compromised in 
cancer as a result of p53 dysfunction (23), 
overexpression of the antiapoptotic Bcl-2 family 
members (24), reduced expression due to promoter 
methylation (25), or activated oncogenic kinase 
pathways including PI3K/AKT (26-28). Our work 
now provides direct evidence for a role of PUMA in 
suppressing carcinogenesis in two intestinal tumor 
models, the AOM/DSS carcinogenic model and the 
APC/min genetic model (7). Our findings are in 
agreement with previous studies suggesting a tumor 
suppressor role of PUMA (29, 30) and Bim (31), 
another BH3-only protein, in lymphomagenesis in 
mice. Together, these observations establish a 
critical role for BH3-only proteins in tumor 
suppression and their deregulation in cancer in the 
absence of genetic alteration. 
 
Apoptosis induction as a critical tumor 
suppressor function of p53  
 The p53 tumor suppressor is essential for 
preventing inappropriate cell proliferation and for 
maintaining genome integrity following genotoxic 
stress (32, 33). The function of p53 is multifaceted 
and not restricted in the nucleus, while 
transcriptional activation by p53 appears to be 
essential for its proapoptotic function in vitro and in 
vivo (34). The great majority of tumor-derived p53 
mutants are defective in apoptosis induction and 

unable to transactivate proapoptotic downstream 
targets such as PUMA and Noxa (23). Genes 
encoding proteins involved in virtually every step of 
apoptosis can be regulated by p53 (23). However, a 
lingering question is how does p53-depependent 
apoptosis stop cancer? Loss of p53 in mice results in 
early onset lymphomas and animal death, which 
provides little insights on how it acts as a tumor 
suppressor in solid organs (35). There is little doubt 
that PUMA accounts for much of the proapoptotic 
activity of p53 in response to DNA damage in vivo, 
and the induction of PUMA by DNA damage is 
strictly p53-dependent (9, 11, 13, 36, 37). 
Nevertheless, PUMA-deficient mice did not develop 
spontaneous tumors more readily compared to their 
WT counterparts under pathogen free conditions (16, 
17).   
 Our recent work indicates that the tumor 
suppressive activities of PUMA are more 
pronounced following DNA damage through a p53-
dependent mechanism in the intestinal tract (7).  
The induction of PUMA by AOM in colonic epithelial 
cells in culture was also dependent on p53 (Figure. 
1A). This would suggest that p53 guards against 
DNA damage to suppress oncogenesis through 
induction of PUMA and apoptosis.  Loss of PUMA or 
p53 significantly blocked AOM-induced apoptosis 
while only minimally impacting cell proliferation, if 
at all (7) (Figure. 1B). Our findings are consistent 
with an earlier finding that an intact p53 pathway 
suppressed AOM-induced colon carcinogenesis (38). 
However,  another study suggested that p53-
dependent apoptosis in response to DNA damage is 
not important for tumor suppression (39). In this 
study, the authors used a mouse model in which p53 
can be switched on or off to show that the p53-
mediated pathological response to whole-body 
irradiation is not required for suppression of 
radiation-induced lymphoma. This conclusion 
perhaps does not apply to carcinomas. Moreover, 
Noxa, another BH3-only protein, can sometimes 
substitute or work together with PUMA to mediate 
p53-dependent apoptosis following DNA damage (17, 
37). It would be of interest to explore whether Noxa 
is also involved in p53-dependent tumor suppression 
in similar models.   
 
Does colon cancer arise from mutated colonic 
stem cells? 
 The intestinal epithelium is the fastest renewing 
tissue in the human body and is regenerated by 
stem cells located at the bottom of the crypts, which 
supply all differentiated cell types (40).  
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Figure 1. p53-dependent PUMA induction contributes to AOM-induced apoptosis but not proliferation.  (A) The parental or p53 KO 
HCT116 cells were treated with 20 ng/ ml AOM for the indicated time. The levels of PUMA, p53 and tubulin were analyzed by Western blotting. 
(B) The proliferation of the colonic crypts was determined by BrdU immunohistochemistry (IHC) in WT, PUMA KO and p53 KO mice 72 hr 
following AOM injection. (C) Active caspase-3 (brown, arrow head) in the colonic crypts 8 hr after AOM injection was detected by IHC. 
 
Differentiated enterocytes are constantly removed 
by apoptosis after migrating to the top of the villus 
(4, 41). What is the cellular origin of intestinal 
tumors? Are they derived from stem cells that have 
endured critical mutations in a certain sequence (1), 
or from more differentiated cells that have acquired 
mutations conferring stem cell-like properties? 
Given the limited life span of differentiated cells in 
the intestinal tract, and the requirement of a 
number of critical events for tumorigenesis, most 
believe that such events must occur in the stem cells.  
However, direct evidence was only available recently 
upon the discovery of intestinal stem cell markers. 
Several elegant genetic studies indicate that 
inactivating APC in the intestinal stem cells, but not 
in rapidly proliferating progenitors, results in rapid 
intestinal tumorigenesis in mice (42, 43). In our 
study, these cells are undergoing PUMA- and p53-
dependent apoptosis following AOM treatment 

(Figure. 1C) (7), suggesting that removal of damaged 
stem cells protects against cancer and such cells as 
the origin of colon cancer. Moreover, PUMA 
deficiency increases the incidence of the precursor 
lesion aberrant crypt foci (ACF) induced by AOM in 
the colon, or that of microadenomas in the small 
intestine of APCMin/+ mice, supporting a stem cell 
origin in tumor initiation. It remains to be clarified 
whether or how PUMA contributes to the removal of 
colonic stem cells under oncogenic stress, 
presumably upon the loss of the other allele of APC. 
Stem cell lineage marking mice will help determine 
the cellular origin of colon tumors and whether that 
is altered by apoptotic deficiency (44, 45). 
 
Does apoptotic deficiency affect mutation 
spectrum and load? 
 The canonical Wnt pathway is invariably 
activated in human colon cancer due to mutations in 
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APC or β-catenin (46),while mutations in β-catenin 
are prevalent in AOM/DSS- or AOM-induced colon 
cancer in rodents (47). PUMA-deficient tumors 
acquire fewer activating β-catenin mutations 
compared to WT tumors and more aggressive 
behaviors (7), suggesting that a preexisting 
deficiency in apoptosis impacts on mutation 
spectrum or frequencies.  Whole genome mutational 
analysis might help identify genetic alterations 
cooperating with apoptotic deficiency to promote 
oncogenesis, leading to a more dynamic view of 
mutation spectrum in carcinogenesis.  Furthermore, 
similar studies coupled with isolated stem cells will 
make it possible to answer whether apoptosis affects 
mutation load in the stem cells to suppress tumor 
initiation, a long standing question in cancer biology. 
These types of experiments along with stepwise 
introduction of mutation, will help better model the 
multi-step process of carcinogenesis in mice. 
 
Apoptosis as a link between cancer and 
inflammation  
 The AOM/DSS model involves both DNA 
damage and inflammation, important components in 
human colon cancer.  Epidemiological studies have 
indicated a clear association between increased 
cancer risks and chronic inflammation and 
infections. The risk of developing colon cancer is 
drastically increased in patients with Crohn’s 
disease or ulcerative colitis. The immune system 
plays a critical role in tumor promotion and control 
depending on the stage as well as type of tumors 
(48). But little is known how it affects tumor 
initiation.  Is there any reason to believe that DNA 
damage response plays a role? The answer is likely 
to be yes. 
 First, immune cells produce various mutagens 
during inflammation including reactive oxygen and 
nitrogen species (RONS), which can damage DNA 
among other macromolecules in the epithelial cells 
(48). This is supported by a recent study using a 
similar AOM/DSS model, in which deleting an 
essential DNA glycosylase Aag1 in the base excision 
repair (BER) pathway led to enhanced colonic 
tumorgenesis and increased mutations or base 
modifications (49). Second, inflammatory cytokines 
such as TNF-alpha can induce apoptosis of the 
intestinal epithelium partly through PUMA (50), 
which sets up an environment for selecting 
apoptosis-deficient cells. Third, chronic tissue repair 
and proliferation can overwhelm the endogenous 
repair capacity leading to fixed mutations. Together, 
a model is emerging in which defective apoptosis 

promotes tumorigenesis by enhancing the survival of 
damaged epithelial cells. Such hypothesis is further 
supported by our observation that DSS induces 
PUMA expression in the colonic mucosa in the 
absence of p53 stabilization (Figure. 2). In addition, 
stresses such as ROS and ER stress (commonly 
associated with inflammatory responses) are found 
to induce PUMA, likely through transcription 
factors other than p53 (18, 51) (Figure. 3). It will 
certainly be interesting to clarify the role of PUMA-
mediated tumor suppression in relation to p53 using 
inflammation-induced tumor models such as IL-10 
knockout mice or DSS treatment alone. Future work 
is needed to better understand the interplay 
between the epithelium and immune system for 
developing strategies for tumor prevention and 
treatment.   

 
 
Figure 2. PUMA expression is induced by DSS in the colon.  WT 
mice were subjected to DSS treatment in drinking water for the 
indicated time, D (day). The levels of PUMA, p53 and tubulin in the 
intestinal mucosa were analyzed by Western blotting. 
 
Targeting apoptosis in cancer prevention and 
treatment  
 It is believed that the maintenance of tumor 
phenotypes is highly dependent on suppression of 
apoptosis triggered by so called “oncogenic stress”(3). 
The very same alterations leading to tumor 
initiation and progression contribute to therapeutic 
resistance (6, 52). Conventional chemotherapeutics 
and radiation primarily target rapidly dividing cells 
through apoptosis induction. Lack of PUMA 
induction leads to chemo or radio resistance, while 
elevated PUMA expression induces profound chemo 
or radio-sensitization of cancer cells (11, 12). The 
BH3-only proteins including Bim and PUMA have  
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Figure 3. A model of PUMA-mediated tumor suppression. PUMA 
is activated by transcription factors in response to stress, leading to 
apoptosis induction and tumor suppression. DNA damage or 
activated oncogenes induces PUMA through p53 to promote 
apoptosis. Inflammatory cytokines induces PUMA through NFκΒ to 
promote apoptosis. DNA damage, inflammatory cytokines and 
perhaps yet-to-be identified mediators and transcription factors (TF) 

ight provoke PUMA-dependent apoptosis during inflammation. m
 
recently been shown to mediate apoptotic responses 
to agents targeting oncogenic kinase pathways in 
cancer cells (27, 53-56). Furthermore, 
chemopreventive agents such as nonsteroidal anti-
inflammatory drugs (NSAIDs) can also promote 
apoptosis in colon cancer cells (20). Together, these 
observations strongly suggest that eliminating 
damaged or abnormal cells through PUMA-mediated 
apoptosis might be useful in preventing and treating 
cancer (Figure. 3). A growing number of small 
molecule BH3 mimetics have shown promise in 
preclinical studies and are now in various stages of 
clinical testing (24, 57). Obviously, apoptosis 
promoting agents might carry some risks. Too much 
of it can potentially lead to stem cell exhaustion and 
premature aging, which was modeled by the “super 
p53” mice that resist cancer development but age 
prematurely depending on the dosage and genetic 
background (58, 59). Cautions certainly need to be 
exercised to find a balance between tumor 
suppression and aging in cancer prevention or 
treatment. Losing a few more damaged stem cells is 
perhaps a price worth paying to stall cancer. 
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