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Abstract

Thapsigargin (TG) is a sesquiterpen lactone that
inhibits the endoplasmic reticulum (ER) calcium
ATPases to disrupt calcium homeostasis and
consequently induces ER stress. We have
previously reported that TG induces apoptosis by
engaging the death receptor 5 (DR5) and the
intrinsic pathways. Second mitochondrial-derived
activator (Smac) is an important modulator of
apoptosis that induces activation of caspases by
antagonizing inhibitors of apoptosis (IAPs). In this
study, we have utilized Smac-proficient and -
deficient human colon cancer cells to investigate
the effects of Smac deficiency during ER-stress-
induced apoptosis. Our results indicate that Smac
deficiency considerably affects ER stress-induced
apoptosis in human colon cancer cells. For
example, ER stress inducing agent TG upregulates
DR5, and activates caspases 3, 9 and 8 in Smac-
proficient cells. In Smac-deficient cells, although
TG-induced DR5 upregulation is not affected,
activation of caspases 3, 9 and 8 is affected. Smac
deficiency also affects TG-induced cytochrome ¢
release from mitochondria into cytosol suggesting
the existence of a potential cross-talk between
Smac and cytochrome c. Thus, our results
indicate that ER stress-induced apoptosis also
engages Smac for transduction of apoptotic
signals in human colon cancer cells and that a
potential feedback signaling between Smac and
cytochrome c appears to modulate the intrinsic
pathway of apoptosis.
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Introduction

A large body of evidence indicates that
alterations in cellular Ca2+ levels can induce
apoptosis (1-5), but the in-depth molecular
mechanisms have not been fully elucidated.
Thapsigargin (TG), a sesquiterpene lactone inhibits
endoplasmic reticulum (ER) Ca?* ATPases and
thereby affects Ca2* homoeostasis (6). For example,
TG-mediated inhibition of ER Ca?* ATPases
interferes with the reuptake of cytosolic Ca2* into
the ER, resulting in increase and decrease of Ca2*
levels in cytosol and the ER respectively (6). It is
believed that TG-mediated depletion of ER Ca2*
stores induces ER stress that eventually triggers
apoptosis. Several lines of evidence suggest that
members of the Bcl-2 family including Bel-2, Belxn
and Bax are important modulators of TG-induced
apoptosis (3, 4). For example, Bcl-2 that interacts
with the ER and mitochondrial membranes (7) is
thought to control the endoplasmic reticulum (ER)
and mitochondrial Ca2* homeostasis as well as the
release of cytochrome c¢ from mitochondria into
cytosol (4, 8-10). Bax, the pro-apoptotic member is
also believed be important in modulating apoptosis
that occurs as a result of alterations in cellular Ca2*
homeostasis (3, 11). Bax, normally a cytosolic
protein, translocates to mitochondria in response to
apoptotic signals that affect Ca2* homeostasis (11-15)
and its translocation to mitochondria is thought to
induce cytochrome c release of into cytosol and
activation of the intrinsic pathway of apoptosis (16).

Smac, (second mitochondria-derived activator of
caspases) also known as DIABLO (direct IAP
binding protein with low pl) (hereafter referred to as
Smac), is another mitochondrial protein that is
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released into cytosol in response to various apoptotic
signals (17, 18). Although the exact mechanism by
which Smac mediates its pro-apoptotic effect
remains to be fully elucidated, several lines of
evidence indicate that Smac mediates its pro-
apoptotic function by inhibiting proteins in the IAP
(inhibitors of apoptosis) family (19-22). In this
context, Smac interactions with XIAP, a prominent
member of the IAP family have been extensively
studied (19-22). XIAP, an anti-apoptotic molecule, is
believed to mediate its function by inhibiting
caspases 3, 7 and 9 (23), and Smac interferes with
XIAP’s ability to inhibit these caspases. Although
the exact mechanism by which Smac inhibits XIAP
is being elucidated, multiple lines of evidence from
structural studies indicate that Smac in dimeric
conformation, utilizes 1its tetrapeptide region
harboring alanine, valine, proline and isoleucine
(AVPI) to interact with BIR2 or BIR3 domains of
XIAP (19-25). In view of its antagonistic effects on
XIAP, Smac serves as an attractive template to
design small molecules with therapeutic potential.
Indeed, several Smac mimetic small molecule
inhibitors of XIAP are currently being developed as
potential anticancer agents (26).

Smac i1s an important pro-apoptotic molecule
however, its role in ER stress-induced apoptosis has
not been thoroughly investigated. In this study, we
have used Smac-proficient (Smac**) and -deficient
(Smac”) HCT116 human colon cancer cell lines (27)
to investigate the role of Smac in ER stress-induced
apoptosis.

Materials and Methods
Materials

TG was purchased from Sigma Chemicals (St.
Louis, MO, USA). McCoy’s 5A cell culture media,
Penicillin/Streptomycin and L-Glutamine were from
Mediatech, Inc (Manassas, VA, USA) and the fetal
bovine serum was bought from Gemini Bioproducts
(Calabasas, CA, USA).

Cell Iines and cell culture

Smac-proficient (Smac**) and -deficient (Smac’)
HCT116 human colon cancer cell lines (27) were
kindly provided by Dr. Bert Vogelstein (Johns
Hopkins University, Baltimore, MD, USA). These
cells were regularly maintained in McCoy's 5A
medium (Mediatech, VA, USA) supplemented with
10% fetal bovine serum, 100 U/ml Penicillin, 100
ug/ml Streptomycin and 2 mM L-Glutamine.
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Analysis for apoptosis

Smac-proficient or Smac-deficient cells were left
untreated or treated with TG (75 nM) for
approximately 24 h and then processed for apoptosis
detection by counting floating and adherent cells
that exhibited morphologic features of apoptosis
using a phase contrast microscope as reported
previously (28).

Western blotting

Western blot analyses were performed by
standard procedures as described previously (28).
DR5 was detected using a monoclonal anti-human
DR5 antibody (Oncogene Science, San Diego, CA,
USA). To detect caspases 3, 8 and 9 activation, anti-
human pro-caspase 3 (BD Bioscience, San Jose, CA,
USA), anti-human pro-caspase 8 antibody and anti-
human pro-caspase 9 antibody (Assay
designs/Stressgene, Ann Arbor, MI, USA) were used.
Detection of Bid cleavage was done by anti-Bid
antibody purchased from R&D, Minneapolis, MN,
USA. Cytochrome c¢ was detected using a
monoclonal anti-cytochrome c¢ antibody from BD
Bioscience, San Jose, CA, USA. Smac detection was
done using a monoclonal anti-Smac antibody
(Upstate Cell Signaling Solutions, Lake Placid, NY,
USA). PB-ractin was detected using a monoclonal
antibody purchased from Sigma Chemicals (St.
Louis, MO, USA).

Prepration of cytosolic fractions

Smac-proficient or -deficient cells were left
untreated or treated with 75 nM TG for
approximately 24 h. Cytosolic fractions were
prepared as we have described (28) and Western
blotting was performed.

Caspase 3 enzymatic assay

Caspase 3 enzymatic assay was performed using
a modified version of a protocol of Sigma caspase 3
fluorometric assay kit. In brief, Smac-proficient or -
deficient cells were treated with 75 nM TG for 24
hrs. Cells were harvested and lysed in caspase 3
assay buffer containing 50 mM HEPES (pH 7.4), 5
mM CHAPs, 5 mM dithiothreitol, and 10 mM
sodium pyrophosphate. The lysates were clarified by
centrifugation and ~50 pg of cell lysate was mixed
with 200 pl caspase assay buffer (20 mM HEPES
(pH 7.4), 5 mM DTT, 2 mM EDTA, 0.1% CHAPs and
15 uM caspase 3 fluorogenic substrate (Ac-DEVD-
AMC, BD Pharmingen, San Jose, CA, USA) at room
temperature for 60 min. The caspase-3 activity was
determined by Synergy HT Microplate Reader (BIO-



TEK Instruments, Winoosski, VA, USA) with
excitation at 380 nm and emission at 460 nm.

Northern blotting

RNA extraction and Northern blot analyses were
performed by standard procedures as we have
described previously (29). A human DR5 cDNA was
used as probe to detect DR5 mRNA levels. Ethidium
bromide staining of the gel was used to indicate
RNA integrity (29).

Results and Discussion

We used Smac-proficient (Smac**) and Smac-
deficient (Smac’) HCT116 human colon cancer cells
(27) in our study. In Smac-deficient cells, Smac
alleles have been subjected to targeted deletion and
thus, they do not express Smac protein. We
investigated TG-induced apoptosis in Smac-
proficient and -deficient cells and as shown in Fig. 1,
TG effectively induces apoptosis in Smac-proficient
cells. However, in Smac-deficient cells, TG-induced
apoptosis is clearly diminished. These results thus,
indicate that Smac appears to play an important
role in TG-induced apoptosis. We have previously
reported that TG engages both the intrinsic and
extrinsic pathways of apoptosis (29). For example,
TG induces cytochrome c release from mitochondria
into cytosol and activates caspases 9 and 3 (29).
Next, we investigated the effect of TG on intrinsic
pathway of apoptosis in both Smac-proficient and —
deficient cells. Fig. 2 shows that TG-induced
apoptosis is coupled with cytochrome c release from
mitochondria into cytosol in Smac-proficient cells.
However, in Smac-deficient cells, cytochrome c
release into cytosol is clearly diminished (Fig. 2). In
Smac-proficient cells, TG also promotes increased
levels of cytosolic Smac and as expected, Smac-
deficient cells do not exhibit Smac expression (Fig.
2). Next, we investigated the effect of TG on
caspases 9 and 3 activation in both types of cells and
as shown in Fig. 3, caspases 3 and 9 activations are
clearly blunted in Smac-deficient cells when
compared with Smac-proficient cells. We also
performed caspase 3 enzymatic assay and the
results were consistent with those obtained by
Western blot analyses (Fig. 4).

Previously, we had reported that TG-induced
apoptosis was associated with TG-mediated
upregulation of death receptor 5 (DR5) and
activation of proximal caspase 8 (29). We had
further reported that TG induced Bid cleavage
suggesting that TG appeared to engage both
intrinsic and extrinsic pathways via Bid cleavage
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Figure 1. TG-induced apoptosis in Smac-proficient and Smac-
deficient cells. Smac-proficient (Smac”") or Smac-deficient (Smac”')
HCT116 cells were left untreated or treated with TG (75 nM) for
approximately 24 h and then processed for apoptosis detection by
counting floating and adherent cells using a phase contrast
microscope as reported previously (28). The values represent mean
*s.e.m. of three independent experiments.
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Figure 2. TG induced cytochrome c release from mitochondria
into cytosol in Smac-proficient and —deficient cells. Smac-
proficient (Smac™) or Smac-deficient (Smac™) cells were left
untreated or treated with 75 nM TG for approximately 24 h. Cytosolic
fractions were prepared as we have previously described (28) and
Western blotting was performed using the anti-cytochrome c¢
antibody or the anti-Smac antibody. The same blots were later
probed with the anti-B-actin antibody to detect B-actin as a loading
control.

(29). Next, we sought to investigate the effect of
Smac deficiency on TG regulation of DR5 and
caspase 8 activation as well as Bid cleavage. In this
context, first, we investigated TG regulation of DR5
expression at the mRNA and protein levels in both
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Figure 3. The effect of TG on caspases 3 and 9 in Smac-
proficient and -deficient cells. Smac -proficient (Smac”*) or Smac-
deficient (Smac™) cells were either left untreated or treated with TG
(75 nM) for approximately 24 h. Cells were harvested and processed
for Western blotting, the same blot was sequentially probed with the
indicated antibodies including anti-caspases 3 and 9, and B-actin.
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Smac-proficient and -deficient cells and as shown in
Fig. 5, TG upregulates DR5 expression in both
Smac-proficient and -deficient cells and that is noted
at both mRNA and protein levels. Next, we
investigated TG effect on caspase 8 activation and
Bid cleavage in both of these cell types.
Interestingly, our results indicate that the
constitutive levels of caspase 8 are lower in the
Smac-deficient cells. In addition, TG-induced
caspase 8 activation is diminished in the Smac-
deficient cells when compared with that from Smac-
proficient cells (Fig. 6), although Bid cleavage
appears to be comparable in both cell types.
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Figure 4. Quantitative results showing caspase 3 activation
induced by TG in Smac-proficient and -deficient cells. Smac -
proficient (Smac”) or Smac-deficient (Smac"') cells were either left
untreated or treated with TG (75 nM) for approximately 24 h. Cells
were harvested and processed for caspase 3 enzymatic assay. The
values represent meants.e.m. of three independent experiments.
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Figure 5. (A) A representative Northern blot shows that TG

upregulates death receptor 5 (DR5) mRNA Ievels/ in Smac-

proficient and -deficient cells. Smac -proficient (Smac™") or Smac-
deficient (Smac"') cells were either left untreated or treated with TG
(75 nM) for approximately 24 h. Cells were harvested and total RNA
was subjected to Northern analysis as we have previously described
(29, 31). A cDNA fragment corresponding to human DR5 was used
as a probe; ethidium bromide staining of the gel is shown to indicate
RNA integrity. (B) A representative Western blot shows that TG
upregulates death receptor 5 (DR5) protein levels in Smac-
proficient and -deficient cells. Smac -proficient (Smac”') or Smac-
deficient (Smac™) cells were either left untreated or treated with TG
(75 nM) for approximately 24 h. Cells were harvested and processed
for Western blot analysis using the anti-DR5 antibody. Same blot
was subsequently probed with anti-B-actin antibody to determine
comparable loading in each lane.

Here, we report that Smac appears to play an
important role in TG-induced apoptosis. Smac is
known to be a negative regulator of IAP. It is known
that Smac mediates its pro-apoptotic function by
interacting with IAP family proteins and alleviates
the IAP-mediated inhibition of caspases 3, 7, and 9
(19-23). Our results show that TG-induced apoptosis
is diminished in Smac-deficient cells and this is
associated with reduction in cytochrome c¢ release
from mitochondria. These data thus indicate that
adequate levels of Smac appear to be required for
the release of cytochrome ¢ from mitochondria and
activation of intrinsic pathway, and imply that Smac
appears to reside upstream of the intrinsic pathway.
Interestingly, a recent study by Hasenjager et al.,
(30) also suggests that Smac can induce cytochrome
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Figure 6. The effect of TG on caspase 8 activation and Bid
cleavage in Smac-proficient and -deficient cells. Smac -proficient
(Smac™) or Smac-deficient (Smac"') cells were either left untreated
or treated with TG (75nM) for approximately 24 h. Cells were
harvested and processed for Western blotting using anti-caspase 8
or anti-Bid antibodies. Same blot was subsequently probed with anti-
B-actin antibody to detect -actin, which serves as a loading control.

B-actin —

¢ release in a Bax/Bcl-xL independent manner. They
used a virus-mediated Tet-off inducible Smac system
to study the role of Smac in regulation of apoptosis
and found that conditional expression of Smac
induced apoptosis in HCT116 and DU145 human
colon and prostate cancer cells (30). They further
noted that Smac-mediated apoptosis was associated
with cytochrome c release from mitochondria as well
as alterations in the mitochondrial membrane
potential. Thus, our data and the study from
Hasenjiger et al., (30) suggest that Smac may be
engaged in a positive feedback loop that leads to
cytochrome c release from mitochondria.

Smac is an important molecule and in-depth
studies are clearly needed to fully elucidate its
regulation and function in response to various
apoptotic insults. It is expected that the outcome of
such studies will enhance our understanding of the
signaling events that regulate cell death and
survival under physiological and pathological
conditions and will also facilitate the development of
novel therapeutics to treat various pathological
conditions in which cell death and survival signaling
is deregulated. In this context, our results
presented herein demonstrate the importance of
Smac in ER-stress-induced apoptosis as well as in
regulation of intrinsic pathway of apoptosis.
Further Future studies are certainly needed to gain
more insights into the molecular mechanisms
involved in such regulation.
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