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Abstract 
Thapsigargin (TG) is a sesquiterpen lactone that 
inhibits the endoplasmic reticulum (ER) calcium 
ATPases to disrupt calcium homeostasis and 
consequently induces ER stress. We have 
previously reported that TG induces apoptosis by 
engaging the death receptor 5 (DR5) and the 
intrinsic pathways.  Second mitochondrial-derived 
activator (Smac) is an important modulator of 
apoptosis that induces activation of caspases by 
antagonizing inhibitors of apoptosis (IAPs).  In this 
study, we have utilized Smac-proficient and -
deficient human colon cancer cells to investigate 
the effects of Smac deficiency during ER-stress-
induced apoptosis.  Our results indicate that Smac 
deficiency considerably affects ER stress-induced 
apoptosis in human colon cancer cells.  For 
example, ER stress inducing agent TG upregulates 
DR5, and activates caspases 3, 9 and 8 in Smac-
proficient cells.  In Smac-deficient cells, although 
TG-induced DR5 upregulation is not affected, 
activation of caspases 3, 9 and 8 is affected.  Smac 
deficiency also affects TG-induced cytochrome c 
release from mitochondria into cytosol suggesting 
the existence of a potential cross-talk between 
Smac and cytochrome c.  Thus, our results 
indicate that ER stress-induced apoptosis also 
engages Smac for transduction of apoptotic 
signals in human colon cancer cells and that a 
potential feedback signaling between Smac and 
cytochrome c appears to modulate the intrinsic 
pathway of apoptosis. 
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Introduction 
 A large body of evidence indicates that 
alterations in cellular Ca2+ levels can induce 
apoptosis (1-5), but the in-depth molecular 
mechanisms have not been fully elucidated. 
Thapsigargin (TG), a sesquiterpene lactone inhibits 
endoplasmic reticulum (ER) Ca2+ ATPases and 
thereby affects Ca2+ homoeostasis (6).  For example, 
TG-mediated inhibition of ER Ca2+ ATPases 
interferes with the reuptake of cytosolic Ca2+ into 
the ER, resulting in increase and decrease of Ca2+ 
levels in cytosol and the ER respectively (6).  It is 
believed that TG-mediated depletion of ER Ca2+ 
stores induces ER stress that eventually triggers 
apoptosis.  Several lines of evidence suggest that 
members of the Bcl-2 family including Bcl-2, BclxL 
and Bax are important modulators of TG-induced 
apoptosis (3, 4). For example, Bcl-2 that interacts 
with the ER and mitochondrial membranes (7) is 
thought to control the endoplasmic reticulum (ER) 
and mitochondrial Ca2+ homeostasis as well as the 
release of cytochrome c from mitochondria into 
cytosol (4, 8-10).  Bax, the pro-apoptotic member is 
also believed be important in modulating apoptosis 
that occurs as a result of alterations in cellular Ca2+ 
homeostasis (3, 11). Bax, normally a cytosolic 
protein, translocates to mitochondria in response to 
apoptotic signals that affect Ca2+ homeostasis (11-15) 
and its translocation to mitochondria is thought to 
induce cytochrome c release of into cytosol and 
activation of the intrinsic pathway of apoptosis (16). 
 Smac, (second mitochondria-derived activator of 
caspases) also known as DIABLO (direct IAP 
binding protein with low pI) (hereafter referred to as 
Smac), is another mitochondrial protein that is 
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released into cytosol in response to various apoptotic 
signals (17, 18).  Although the exact mechanism by 
which Smac mediates its pro-apoptotic effect 
remains to be fully elucidated, several lines of 
evidence indicate that Smac mediates its pro-
apoptotic function by inhibiting proteins in the IAP 
(inhibitors of apoptosis) family (19-22).  In this 
context, Smac interactions with XIAP, a prominent 
member of the IAP family have been extensively 
studied (19-22).  XIAP, an anti-apoptotic molecule, is 
believed to mediate its function by inhibiting 
caspases 3, 7 and 9 (23), and Smac interferes with 
XIAP’s ability to inhibit these caspases.  Although 
the exact mechanism by which Smac inhibits XIAP 
is being elucidated, multiple lines of evidence from 
structural studies indicate that Smac in dimeric 
conformation, utilizes its tetrapeptide region 
harboring alanine, valine, proline and isoleucine 
(AVPI) to interact with BIR2 or BIR3 domains of 
XIAP (19-25).  In view of its antagonistic effects on 
XIAP, Smac serves as an attractive template to 
design small molecules with therapeutic potential.  
Indeed, several Smac mimetic small molecule 
inhibitors of XIAP are currently being developed as 
potential anticancer agents (26). 
 Smac is an important pro-apoptotic molecule 
however, its role in ER stress-induced apoptosis has 
not been thoroughly investigated.  In this study, we 
have used Smac-proficient (Smac+/+) and -deficient 
(Smac-/-) HCT116 human colon cancer cell lines  (27) 
to investigate the role of Smac in ER stress-induced 
apoptosis.   
 
 
Materials and Methods  
Materials 
 TG was purchased from Sigma Chemicals (St. 
Louis, MO, USA). McCoy’s 5A cell culture media, 
Penicillin/Streptomycin and L-Glutamine were from 
Mediatech, Inc (Manassas, VA, USA) and the fetal 
bovine serum was bought from Gemini Bioproducts 
(Calabasas, CA, USA).  
 
Cell lines and cell culture 
 Smac-proficient (Smac+/+) and -deficient (Smac-/-) 
HCT116 human colon cancer cell lines (27) were 
kindly provided by Dr. Bert Vogelstein (Johns 
Hopkins University, Baltimore, MD, USA).  These 
cells were regularly maintained in McCoy's 5A 
medium (Mediatech, VA, USA) supplemented with 
10% fetal bovine serum, 100 U/ml Penicillin, 100 
ug/ml Streptomycin and 2 mM L-Glutamine.  
 

Analysis for apoptosis 
 Smac-proficient or Smac-deficient cells were left 
untreated or treated with TG (75 nM) for 
approximately 24 h and then processed for apoptosis 
detection by counting floating and adherent cells 
that exhibited morphologic features of apoptosis 
using a phase contrast microscope as reported 
previously (28). 
  
Western blotting 
 Western blot analyses were performed by 
standard procedures as described previously (28).  
DR5 was detected using a monoclonal anti-human 
DR5 antibody (Oncogene Science, San Diego, CA, 
USA).  To detect caspases 3, 8 and 9 activation, anti-
human pro-caspase 3 (BD Bioscience, San Jose, CA, 
USA), anti-human pro-caspase 8 antibody and anti-
human pro-caspase 9 antibody (Assay 
designs/Stressgene, Ann Arbor, MI, USA) were used.  
Detection of Bid cleavage was done by anti-Bid 
antibody purchased from R&D, Minneapolis, MN, 
USA.  Cytochrome c was detected using a 
monoclonal anti-cytochrome c antibody from BD 
Bioscience, San Jose, CA, USA.  Smac detection was 
done using a monoclonal anti-Smac antibody 
(Upstate Cell Signaling Solutions, Lake Placid, NY, 
USA).  β-actin was detected using a monoclonal 
antibody purchased from Sigma Chemicals (St. 
Louis, MO, USA).  
 
Prepration of cytosolic fractions 
 Smac-proficient or -deficient cells were left 
untreated or treated with 75 nM TG for 
approximately 24 h. Cytosolic fractions were 
prepared as we have described (28) and Western 
blotting was performed. 
 
Caspase 3 enzymatic assay 
 Caspase 3 enzymatic assay was performed using 
a modified version of a protocol of Sigma caspase 3 
fluorometric assay kit.  In brief, Smac-proficient or -
deficient cells were treated with 75 nM TG for 24 
hrs.  Cells were harvested and lysed in caspase 3 
assay buffer containing 50 mM HEPES (pH 7.4), 5 
mM CHAPs, 5 mM dithiothreitol, and 10 mM 
sodium pyrophosphate. The lysates were clarified by 
centrifugation and ~50 μg of cell lysate was mixed 
with 200 µl caspase assay buffer (20 mM HEPES 
(pH 7.4), 5 mM DTT, 2 mM EDTA, 0.1% CHAPs and 
15 µM caspase 3 fluorogenic substrate (Ac-DEVD-
AMC, BD Pharmingen, San Jose, CA, USA) at room 
temperature for 60 min.  The caspase-3 activity was 
determined by Synergy HT Microplate Reader (BIO-
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TEK Instruments, Winoosski, VA, USA) with 
excitation at 380 nm and emission at 460 nm. 
 
Northern blotting 
 RNA extraction and Northern blot analyses were 
performed by standard procedures as we have 
described previously (29).  A human DR5 cDNA was 
used as probe to detect DR5 mRNA levels.  Ethidium 
bromide staining of the gel was used to indicate 
RNA integrity (29). 
 
Results and Discussion 
 We used Smac-proficient (Smac+/+) and Smac-
deficient (Smac-/-) HCT116 human colon cancer cells 
(27) in our study. In Smac-deficient cells, Smac 
alleles have been subjected to targeted deletion and 
thus, they do not express Smac protein.  We 
investigated TG-induced apoptosis in Smac-
proficient and -deficient cells and as shown in Fig. 1, 
TG effectively induces apoptosis in Smac-proficient 
cells. However, in Smac-deficient cells, TG-induced 
apoptosis is clearly diminished. These results thus, 
indicate that Smac appears to play an important 
role in TG-induced apoptosis. We have previously 
reported that TG engages both the intrinsic and 
extrinsic pathways of apoptosis (29). For example, 
TG induces cytochrome c release from mitochondria 
into cytosol and activates caspases 9 and 3 (29).  
Next, we investigated the effect of TG on intrinsic 
pathway of apoptosis in both Smac-proficient and –
deficient cells. Fig. 2 shows that TG-induced 
apoptosis is coupled with cytochrome c release from 
mitochondria into cytosol in Smac-proficient cells.  
However, in Smac-deficient cells, cytochrome c 
release into cytosol is clearly diminished (Fig. 2).  In 
Smac-proficient cells, TG also promotes increased 
levels of cytosolic Smac and as expected, Smac-
deficient cells do not exhibit Smac expression (Fig. 
2).  Next, we investigated the effect of TG on 
caspases 9 and 3 activation in both types of cells and 
as shown in Fig. 3, caspases 3 and 9 activations are 
clearly blunted in Smac-deficient cells when 
compared with Smac-proficient cells. We also 
performed caspase 3 enzymatic assay and the 
results were consistent with those obtained by 
Western blot analyses (Fig. 4). 
 Previously, we had reported that TG-induced 
apoptosis was associated with TG-mediated 
upregulation of death receptor 5 (DR5) and 
activation of proximal caspase 8 (29).  We had 
further reported that TG induced Bid cleavage 
suggesting that TG appeared to engage both 
intrinsic and extrinsic pathways via Bid cleavage  
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Figure 1.  TG-induced apoptosis in Smac-proficient and Smac-
deficient cells. Smac-proficient (Smac+/+) or Smac-deficient (Smac-/-) 
HCT116 cells were left untreated or treated with TG (75 nM) for 
approximately 24 h and then processed for apoptosis detection by 
counting floating and adherent cells using a phase contrast 
microscope as reported previously (28). The values represent mean 

s.e.m. of three independent experiments. 
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Figure 2.  TG induced cytochrome c release from mitochondria 
into cytosol in Smac-proficient and –deficient cells.  Smac-
proficient (Smac+/+) or Smac-deficient (Smac-/-) cells were left 
untreated or treated with 75 nM TG for approximately 24 h. Cytosolic 
fractions were prepared as we have previously described (28) and 
Western blotting was performed using the anti-cytochrome c 
antibody or the anti-Smac antibody. The same blots were later 
probed with the anti-β-actin antibody to detect β-actin as a loading 
control. 
 
(29). Next, we sought to investigate the effect of 
Smac deficiency on TG regulation of DR5 and 
caspase 8 activation as well as Bid cleavage.  In this 
context, first, we investigated TG regulation of DR5 
expression at the mRNA and protein levels in both  
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Figure 3.  The effect of TG on caspases 3 and 9 in Smac-
proficient and -deficient cells. Smac -proficient (Smac+/+) or Smac-
deficient (Smac-/-) cells were either left untreated or treated with TG 
(75 nM) for approximately 24 h. Cells were harvested and processed 
for Western blotting, the same blot was sequentially probed with the 
indicated antibodies including anti-caspases 3 and 9, and β-actin.  
 
Smac-proficient and -deficient cells and as shown in 
Fig. 5, TG upregulates DR5 expression in both 
Smac-proficient and -deficient cells and that is noted 
at both mRNA and protein levels.  Next, we 
investigated TG effect on caspase 8 activation and 
Bid cleavage in both of these cell types.  
Interestingly, our results indicate that the 
constitutive levels of caspase 8 are lower in the 
Smac-deficient cells.  In addition, TG-induced 
caspase 8 activation is diminished in the Smac-
deficient cells when compared with that from Smac-
proficient cells (Fig. 6), although Bid cleavage 
appears to be comparable in both cell types.   
 

 
Figure 4. Quantitative results showing caspase 3 activation 
induced by TG in Smac-proficient and -deficient cells. Smac -
proficient (Smac+/+) or Smac-deficient (Smac-/-) cells were either left 
untreated or treated with TG (75 nM) for approximately 24 h. Cells 
were harvested and processed for caspase 3 enzymatic assay. The 
values represent mean s.e.m. of three independent experiments. 

 
Figure 5.  (A) A representative Northern blot shows that TG 
upregulates death receptor 5 (DR5) mRNA levels in Smac-
proficient and -deficient cells. Smac -proficient (Smac+/+) or Smac-
deficient (Smac-/-) cells were either left untreated or treated with TG 
(75 nM) for approximately 24 h. Cells were harvested and total RNA 
was subjected to Northern analysis as we have previously described 
(29, 31). A cDNA fragment corresponding to human DR5 was used 
as a probe; ethidium bromide staining of the gel is shown to indicate 
RNA integrity. (B) A representative Western blot shows that TG 
upregulates death receptor 5 (DR5) protein levels in Smac-
proficient and -deficient cells. Smac -proficient (Smac+/-) or Smac-
deficient (Smac-/-) cells were either left untreated or treated with TG 
(75 nM) for approximately 24 h. Cells were harvested and processed 
for Western blot analysis using the anti-DR5 antibody. Same blot 
was subsequently probed with anti-β-actin antibody to determine 
omparable loading in each lane. 
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 Here, we report that Smac appears to play an 
important role in TG-induced apoptosis.  Smac is 
known to be a negative regulator of IAP.  It is known 
that Smac mediates its pro-apoptotic function by 
interacting with IAP family proteins and alleviates 
the IAP-mediated inhibition of caspases 3, 7, and 9 
(19-23). Our results show that TG-induced apoptosis 
is diminished in Smac-deficient cells and this is 
associated with reduction in cytochrome c release 
from mitochondria.  These data thus indicate that 
adequate levels of Smac appear to be required for 
the release of cytochrome c from mitochondria and 
activation of intrinsic pathway, and imply that Smac 
appears to reside upstream of the intrinsic pathway.  
Interestingly, a recent study by Hasenjäger et al., 
(30) also suggests that Smac can induce cytochrome  
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Figure 6. The effect of TG on caspase 8 activation and Bid 
cleavage in Smac-proficient and -deficient cells. Smac -proficient 
(Smac+/+) or Smac-deficient (Smac-/-) cells were either left untreated 
or treated with TG (75 nM) for approximately 24 h. Cells were 
harvested and processed for Western blotting using anti-caspase 8 
or anti-Bid antibodies. Same blot was subsequently probed with anti-
β-actin antibody to detect β-actin, which serves as a loading control.  
 
c release in a Bax/Bcl-xL independent manner.  They 
used a virus-mediated Tet-off inducible Smac system 
to study the role of Smac in regulation of apoptosis 
and found that conditional expression of Smac 
induced apoptosis in HCT116 and DU145 human 
colon and prostate cancer cells (30). They further 
noted that Smac-mediated apoptosis was associated  
with cytochrome c release from mitochondria as well 
as alterations in the mitochondrial membrane 
potential.  Thus, our data and the study from 
Hasenjäger et al., (30) suggest that Smac may be 
engaged in a positive feedback loop that leads to 
cytochrome c release from mitochondria. 
 Smac is an important molecule and in-depth 
studies are clearly needed to fully elucidate its 
regulation and function in response to various 
apoptotic insults.  It is expected that the outcome of 
such studies will enhance our understanding of the 
signaling events that regulate cell death and 
survival under physiological and pathological 
conditions and will also facilitate the development of 
novel therapeutics to treat various pathological 
conditions in which cell death and survival signaling 
is deregulated.  In this context, our results 
presented herein demonstrate the importance of 
Smac in ER-stress-induced apoptosis as well as in 
regulation of intrinsic pathway of apoptosis.  
Further Future studies are certainly needed to gain 
more insights into the molecular mechanisms 
involved in such regulation. 
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