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Abstract 
Farnesyl transferase inhibitors (FTIs) have so far 
proved to have limited value as single agents in 
clinical trials. This PharmSight will focus on the 
use of a novel group of FTIs that are most effective 
in vitro when used in combination with the “statin” 
class of anti-hypercholesterolemic agents, which 
also block protein prenylation. We recently showed 
that these novel FTIs in combination with 
lovastatin reduce Ras prenylation and induce an 
apoptotic response in malignant peripheral nerve 
sheath cells. The combination of statins with these 
new FTIs may produce profound synergistic 
cytostatic and cytotoxic effects against a variety of 
tumors and other proliferative disorders. Since 
statins are well tolerated in the clinic, we suggest 
that this combination approach should be tested in 
in vivo models. 
 
Introduction 
 Modification of proteins with isoprenoid groups 
was identified in mammalian cells in the early 
1980’s (1). Approximately 0.5% of proteins are 
modified by isoprenoids and a fraction of these are 
known to regulate critical cellular processes such as 
growth and survival (2). We will discuss in this 
PharmSight a novel combination approach that can 
block the isoprenylation of proteins and has the 
potential to induce cytostatic and cytotoxic 
responses against hyperproliferative diseases. 
 Numerous proteins contain a “CaaX” prenylation  
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motif at the carboxyl terminus. This motif marks the 
protein to be modified by either a 15-carbon farnesyl 
pyrophosphate (FPP) or a 20-carbon geranylgeranyl 
pyrophosphate (GGPP) on the cysteine of the “CaaX” 
box (Fig. 1) (3). When the CaaX box ends with a 
serine, methionine, or glutamine, the protein is 
farnesylated, whereas a CaaX box ending in leucine 
is preferentially geranylgeranylated (4). This 
modification occurs on the nascent precursor protein 
in the cytosol and allows the protein to associate 
with the endoplasmic reticulum (ER). Additional 
steps occur at the ER where Ras converting enzyme 
(RCE1) proteolytically removes the three remaining 
amino acids (-aaX) followed by methylation of the C-
terminal cysteine residue by isoprenylcysteine 
carboxymethyltransferase (ICMT) (5).  
 Two major classes of drugs have been developed 
that block protein farnesylation. The first class, 
which includes lovastatin and various synthetic 
HMG-CoA reductase inhibitors, are collectively 
referred to as the "statins" and act to reduce 
production of cholesterol through inhibition of the 
mevalonate pathway. This pathway provides the cell, 
via the key branch-point intermediate farnesyl 
pyrophosphate (FPP), with cholesterol and the 
prenyl diphosphates used to modify numerous 
cellular proteins (6). Early studies on the potential 
toxicity of statins demonstrated that high levels 
could block cell growth (6), and there is strong 
evidence that this effect is due to the blockade of 
protein prenylation (7). Statins are known to reduce 
serum cholesterol, which has been shown in clinical 
trials to be beneficial to patients with coronary 
artery disease (8, 9). However, additional clinical 
evidence suggests that some cardiovascular benefits  
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Figure 1.  Ras small GTPases are modified at the C-terminal region by either a 15-carbon farnesyl isoprenoid or a 20-carbon geranylgeranyl 
isoprenoid. Ras and numerous other proteins depend on this initial posttranslational modification in order to traffic and associate with 
membranes where they can signal downstream to effector proteins. Since Ras has a major role in cancer development, inhibiting this 
prenylation step is a major focus. FTIs have been developed and were effective in preclinical studies but have not shown strong activity in the 
clinic. One reason may be the ability of certain proteins that are normally farnesylated, such as N-Ras and K-Ras, to be alternatively prenylated 
with a geranylgeranyl isoprenoid in the presence of FTIs. Thus, designing a therapy to inhibit alternative prenylation is critical. Our work has 
identified a therapy in which a combination of statin and novel FTIs is used to reduce Ras prenylation in a model where N-Ras is the 
predominant isoform expressed. This figure was adapted from Phillips M.R. and Cox A.D. (49).
 
may not be due to reduced serum cholesterol (10). In 
some cases, the “non-cholesterol” effects may be due 
to inhibition of protein prenylation (11, 12). The 
potential ability of statins to block protein 
prenylation at clinically reasonable levels has led to 
significant interest in their effects on the growth of  

 
Figure 2.  Lovastatin/FTI-1 combination treatment reduced Ras 
prenylation in STS-26T MPNST cells. STS-26T cells were treated as 
indicated for 24 hours and whole cell lysates were probed for Ras 
prenylation status. Inhibition of prenylation is observed by the slower 
mobility or upshifted band via western analysis. Please refer to 
western blot methods from Wojtkowiak et al., (24). Single treatments 
of 1 μM FTI-1 or 1 μM lovastatin slightly increased the presence of 
the precursor Ras with continued expression of modified Ras. 
However, combination treatment with lovastatin plus FTI-1 greatly 
reduced the expression of modified Ras. 
 
tumor cells. While retrospective analyses of clinical 
data from statin-treated patients have been 
contradictory, cellular data have clearly 
demonstrated antiproliferative effects of statins on  

 
tumor cells that correlated with their ability to block 
protein prenylation (13).  
 The second class of drugs that reduces protein 
farnesylation is those that directly target protein 
farnesyl transferase (FTase). Numerous inhibitors of 
FTase have been designed and include compounds 
that act as CaaX peptidomimetics that compete 
directly with the peptide substrate of FTase and 
those that are analogs of prenyl groups and compete 
with endogenous FPP for binding to FTase (14-16). 
Of these FTIs, two drugs derived from compound 
library screening efforts have progressed to phase 
III clinical trials – R115777/Zarnestra/tipifarnib (17) 
and SCH66336/Sarasar/lonafarnib (18). Both of 
these compounds inhibit FTase by competing with 
the CaaX substrate of the enzyme. They inhibit the 
growth of many human tumor cell lines in vitro and 
have resulted in either tumor growth inhibition or 
tumor regression in a spectrum of xenograft models 
(3, 19).  
 Statins, through their action to limit cellular 
prenyl substrate pools, should potentiate the action 
of FTIs and have a particularly synergistic effect 
with FTIs that are competitive with the FPP 
substrate of the enzyme (20, 21). In fact, our group 
has shown that lovastatin in combination with the  
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Figure 3.  Lovastatin/FTI-1 combination treatment reduces cell proliferation and induces a G1 cell cycle arrest in STS-26T cells. A. STS-26T 
cells were treated as described for 24, 48, and 72 hours. Cell viability was determined based on the cells’ ability to convert MTT to formazan 
precipitate. Please refer to MTT assay methods from Li et al., (50). Single treatments of DMSO (vehicle), lovastatin, or FTI-1 did not reduce 
STS-26T proliferation. Combination treatment of lovastatin plus FTI-1 blocked cell proliferation. B. STS-26T cell cycle progression was 
determined using fluorescence activating cell sorting (FACS). STS-26T cultures were treated for 24 hours on the day after plating. The 
histograms represent 104 events. Please refer to FACS methods from Wojtkowiak et al., (24). 
 
FTI 3-allyfarnesol induces the relocalization of RhoB, 
a protein that is farnesylated or geranylgeranylated, 
from membrane fractions to cytosolic fractions in 
A10 vascular smooth muscle cells (22). The FTI 3-
allyfarnesol was later modified with a pro-drug 
moiety that masked its modification by 
phosphorylation to allow improved cell penetration 
and efficacy. This pro-drug FTI (5b) used in 
combination with lovastatin also reduced RhoB 
prenylation and cell proliferation of STS-26T 
malignant peripheral nerve sheath tumor (MPNST) 
cells (23). We recently published work showing FTI-
1 and FTI-2, which were further developed to allow 
improved aqueous solubility, can reduce Ras 
prenylation and induce apoptosis when used in 
combination with nanomolar doses of lovastatin in 
two MPNST cells lines derived from patients with 
Type 1 neurofibromatosis (NF1), NF90-8 and ST88-
14 (24). We propose that the combination of FTIs 
with statins may be more efficacious towards 
hyperproliferative disorders such as NF1 (25). 
 
Results 
 We tested the efficacy of lovastatin and FTI-1 
alone or in combination against a sporadic MPNST 
cell line, STS-26T. The effect on protein prenylation 
was observed by monitoring the migration pattern of 
Ras by western blotting (Fig. 2). The slower mobility 
or upshifted band represents the precursor  

 
molecule and is consistent with an inhibition of 
FTase function. Single treatments of DMSO and 1 
μM FTI-1 had little detectable effect on blocking Ras 
prenylation while 1 μM lovastatin had a minimal 
effect at 24 hours. However, using the compounds in 
combination greatly increased the presence of the 
upper band, with a corresponding decrease in the 
lower modified Ras band. Since the predominant 
isoform of Ras that is expressed in these cells is N-
Ras (26), these results suggest that the combination 
of lovastatin and FTI-1 can prevent the alternative 
modification of N-Ras with geranylgeranyl moieties 
(27). 
 In addition to blocking Ras prenylation, Fig. 3A 
presents proliferation data from an MTT assay on 
STS-26T cells. As observed with Ras prenylation, 
single treatments of FTI-1 or lovastatin had little 
effect and did not reduce proliferation as compared 
to the control treatments. The combination of 
lovastatin plus FTI-1 significantly reduced STS-26T 
proliferation. Lovastatin/FTI-1 combination 
treatment also blocks cell cycle progression of STS-
26T cells (Fig. 3B). Lovastatin/FTI-1 combination 
treatment significantly increased the number of cells 
with G1 DNA content and decreased the S phase 
population, which is consistent with a cytostatic 
effect. At this early treatment time, there is a small 
increase in the proportion of apparently apoptotic 
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cells that becomes significant with more prolonged 
exposure to the drug combination (24). 
 
Discussion 
 FTIs were initially designed to inhibit the 
prenylation of Ras small GTPases as single agents. 
Pre-clinical studies investigating the efficacy of FTIs 
against cancer cell lines demonstrated reduced 
protein prenylation and reversal of Ras transformed 
phenotypes. For example, the peptidomimetic FTI L-
744,832 reduced the proliferation of 70% of tumor 
cell lines tested and induced tumor regression in an 
H-Ras transgenic mouse model (28, 29).  
 Unfortunately, the efficacy of FTIs in cell culture 
and mouse studies has not yet been translated into a 
positive clinical response. The results of three phase 
II trials for tipifarnib, R115777, have been reported 
against pancreatic cancer, breast cancer, and non-
small cell lung carcinoma (NSCLC) (30-32). No 
responses were observed in the pancreatic cancer 
and NSCLC studies (30, 31), although there were 
nine responses and nine stable diseases in the 
advanced breast cancer study (32). Phase III studies 
observing the efficacy of tipifarnib compared to 
placebo effects in colorectal cancer reported no 
significant effects (33). Lonafarnib, SCH66336, 
tested against urothelial and colorectal cancer in 
phase II trials had no favorable response (34, 35). 
Results from phase III studies involving lonafarnib 
have not been reported yet. 
 Several factors may explain why FTIs worked 
extremely well in preclinical studies but 
significantly less well as single agents against solid 
tumors. FTIs were designed to inhibit the 
prenylation of Ras proteins, with the assumption 
that inhibition of maturation of the driving oncogene 
of many human cancers would yield therapeutic 
benefit. It has become apparent that K-Ras and N-
Ras can be alternatively geranylgeranylated in the 
presence of FTIs (27) [see Fig. 1], which may provide 
an explanation for their limited activity. Further, 
since K- and N-Ras are more commonly mutated in 
human cancer than the exclusively farnesylated H-
Ras, this “escape mechanism” could allow the cancer 
cells to continue growing regardless of FTase 
inhibition. Our hypothesis is that the combination of 
prenylation inhibitor lovastatin with an FPP-
competitive FTI (24) will provide both very effective 
action as a synergistic FTI approach and also, again 
through limitation of cellular pools of prenyl 
precursors, blunt the ability of proteins such as N-
Ras or K-Ras to become alternatively 
geranylgeranylated. 

 Another consideration is that although Ras 
isoforms such as K-Ras are important during the 
initiation of cancer development (36, 37) additional 
mutations must occur for a complete transformation. 
Thus, Ras may not be the sole driving force in many 
of the cancers in which FTIs were tested. Utilizing a 
compound that can reduce Ras prenylation in 
combination with drugs that inhibit alternative 
cellular functions may be more beneficial in the 
clinic. Current chemotherapeutic agents such as 
doxorubicin, cisplatin, and vinblastine, and 
paclitaxel are now being combined with FTIs in 
clinical trials in an attempt to create additive and 
synergistic treatments (38). Results from a phase II 
study using lonafarnib plus paclitaxel presented a 
synergy that produced a clinical response in 48% 
percent of NSCLC patients (39). It may also be 
worthwhile to consider the combination of both 
effective inhibition of protein prenylation and 
another targeted therapy, such as block of driving 
kinase pathways (40).  
 Another potential problem with the 
interpretation of the action of FTIs is that the most 
critical cellular target(s) for their anti-proliferative 
effects has not been rigorously established. Thus, 
while FTIs can inhibit the prenylation of the Ras 
isoforms during in vitro studies, reduced prenylation 
of other proteins such as RhoB, CENP-E, CENP-F, 
and Rheb may also be responsible for or contribute 
to the observed effects. For example, RhoB is a small 
GTPase that can either be modified with an FPP or 
GGPP isoprenoid even in the absence of 
perturbation of the pathways by drug treatment. 
Interestingly, Prendergast and colleagues have 
suggested that RhoB that is geranylgeranylated in 
the presence of FTIs induces an apoptotic response 
(41, 42). On the other hand, Sebti and colleagues 
have suggested that both farnesylated and 
geranylgeranylated RhoB can be antiproliferative 
and induce apoptosis (43). The combination of the 
novel FPP-competitive FTIs and lovastatin clearly 
blocks the prenylation of RhoB in MPNST cells (23). 
Centromeric proteins (CENP-E and CENP-F) are 
normally farnesylated and have an important role in 
cell division. The ability of FTIs to induce a G2 arrest 
may be directly linked to inhibition of CENP 
farnesylation (44, 45). The combination of lovastatin 
and FPP–competitive FTI induces a G1 arrest (not a 
G2 arrest) in several cell types, however (22, 24, 26). 
Rheb, another exclusively farnesylated small 
GTPase, also appears to be a critical target of FTIs 
(46, 47). Inhibition of Rheb farnesylation was also 
shown to be antiproliferative (48). 
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 Statins are some of the most prescribed drugs 
and are taken with the goal of reducing serum 
cholesterol levels. Statins have also been shown to 
have beneficial effects that are independent of 
reduced cholesterol and may be due to reduced 
protein prenylation (11, 12). Statins may sensitize 
tumor cells to co-administered FTIs to provide a 
synergistic drug combination that does not exhibit 
toxicity to normal cells (24). We propose that this 
combination approach of statins plus FPP-
competitive FTIs should be tested in in vivo models 
of cancer and other hyperproliferative disorders. 
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