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Abstract 
Human arylamine N-acetyltransferase 1 (NAT1) is a 
phase II xenobiotic-metabolizing enzyme (XME) 
involved in the biotransformation of many aromatic 
amines and heterocyclic amines. This XME is 
known to play important roles in both the 
detoxication and/or bioactivation of numerous 
drugs and carcinogens. NAT1 is a polymorphic 
enzyme with a large tissue distribution. NAT1 
polymorphisms and activity have been extensively 
studied because of its potential role in the 
biotransformation of important carcinogens. 
Several recent studies suggest that NAT1 may 
have a role in breast cancer progression. Indeed, 
this XME has been shown to affect the growth and 
drug resistance of breast cancer cells and appears 
to be a marker in human estrogen receptor positive 
breast cancer. Here we provide an overview of our 
recently published results indicating that NAT1 is a 
new target of the anticancer drug cisplatin in 
breast cancer cells. Moreover, these results are 
discussed in light of the data showing inhibition of 
human NAT1 and its mouse orthologue by natural 
and synthetic estrogens. 
 
 NAT1 is one of the two polymorphic human 
XME that biotransforms various aromatic and 
heterocyclic amines through their acetylation (1). 
This enzymatic reaction can lead either to 
detoxification (mainly through N-acetylation) or to  
_______________________ 
Received 09/10/08; accepted 12/22/08 
Correspondence: Dr. Fernando Rodrigues-Lima, 
Laboratoire de Cytophysiologie et Toxicologie Cellulaire 
(EA 1553) Univ Paris Diderot-Paris 7, 75013, Paris, 
France. Phone: 33 1 53 27 83 36 

bioactivation (through O-acetylation) (1). Several 
NAT1 substrates are therapeutic drugs or 
environmental carcinogens (1, 2). In addition, NAT1  
N-acetylates the folate catabolite p-
aminobenzoylglutamate (3). This suggests a role of 
this XME in folate metabolism and in related 
congenital or malignant diseases (4). Contrary to the 
NAT2 isoform, NAT1 is ubiquitously expressed (5, 6). 
The NAT1 gene is located in chromosome 8 at 8p21-
22, a region reported to be deleted in many cancers 
(7).  
 Changes in the N- and/or O-acetylation of these 
aromatic compounds have been linked to 
carcinogenesis (1, 8). The balance between N- and O-
acetylation depends on several factors, in particular 
on NAT activity. Several polymorphisms affecting 
NAT1 enzyme activity have been reported (9). These 
inter-individual variations have been implicated in 
modulating susceptibility to adverse drug reactions 
and to various diseases, including cancer (9). In 
addition, NAT1 activity is now known to be 
influenced by environmental factors such as certain 
aromatic amine substrates or biological oxidants 
(10-14). NAT1 is thus regulated at both genetic and 
environmental levels and the functions of this XME 
may be linked to carcinogenesis (15). 
 Several lines of recent evidence further support 
a role for NAT1 in breast cancer. Indeed, several 
microarray and proteomic studies indicate that 
NAT1 is highly expressed in estrogen receptor 
positive breast cancer (16). NAT1 gene is one of the 
ten most highly expressed genes in estrogen-
responsive-positive tumors. The results of these 
studies have recently been reviewed by Wakefield et 
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al., (16) and are available through the Oncomine 
database (http://www.oncomine.org/). Moreover, 
overexpression of NAT1 in normal breast luminal 
epithelial cells induced two of the hallmark traits of 
cancer, i.e., enhanced growth and resistance to 
certain therapeutic cytotoxic drugs used in cancer 
treatment (drugs such as etoposide) (17). In addition, 
recent studies from Minchin’s group (18) have shown 
that NAT1 is induced by androgens in human 
prostate cancer cells with possible implications for 
cancer risk (18). The increasing evidence for an 
association of NAT1 with carcinogenesis, in 
particular with breast cancer, suggests that this 
XME could be targeted for breast cancer therapy.   
 We recently reported evidence showing that 
human NAT1 is a target of cisplatin 
(cisdiaminedichloroplatinumII) (19) (Fig. 1). This 
drug is one of the most important chemotherapeutic 
compounds used in the management of various 
human malignancies (20). The efficacy of cisplatin 
against several breast cancer cells in vitro has 
recently highlighted the potential use of such drugs 
in the clinic for breast cancer (20). It has been 
known for a long time that the cytotoxic/cytostatic 
effects of cisplatin are mainly due to its ability to 
form intrastrand and interstrand cross-links within 
DNA, leading to altered DNA replication, cell 
growth and apoptosis. However, evidence suggests 
that cisplatin may also function through additional 
mechanisms not related to DNA-binding (21). In fact, 
only around 1% of cisplatin is bound to DNA and 
most of the drug is available for interactions with 
nucleophilic sites on other biological molecules. 
Therefore it is likely that some of the 
pharmacological and/or toxicological effects of 
cisplatin are due to reaction with cellular 
macromolecules, in particular proteins (21). Indeed, 
the function of several key enzymes has been 
reported to be impaired by cisplatin. These enzymes 
include DNA polymerase (22), caspases 3 and 8 (23), 
and topoisomerase II (24).  
 We found that a short exposure of two human 
breast cancer cell lines, MCF-7 and MDA-MB-231, 
to cisplatin at pharmacologically relevant levels 
could impair the endogenous functions of NAT1. 
When mice were exposed to cisplatin at clinically-
relevant concentrations (<400 μM) significant 
inhibition (ranging from 25 to 50% inhibition) of 
endogenous NAT1 activity was noted in liver, kidney 
and blood. Biochemical and enzymatic studies using 
recombinant human NAT1 enzyme provided further 
insight into the putative molecular basis for the 
impairment of human NAT1 by cisplatin in vitro  
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Figure 1.  Chemical structures of cisplatin and tamoxifen. 
 
and in vivo. We found that the inhibition of the 
enzyme by cisplatin was due to the formation of an 
irreversible drug-adduct with the active-site cysteine 
residues of NAT1. The second-order rate constant for 
the formation of this adduct and the subsequent 
inhibition of the enzyme were determined to be 700 
M-1. min-1. This parameter indicated that the 
reaction of cisplatin with NAT1 was rapid. So far, 
this rate constant appears to be the maximum 
reported for a reaction between biological molecule 
and cisplatin. Indeed, the second-order rate constant 
of cisplatin for DNA reaction of cisplatin is around 
125 M-1. min-1. Reduced glutathione and 
metallothioneins, two of the most important 
scavengers of cisplatin in cells, are known to react 
with this drug with second-order rate constants of 
1.6 M-1.min-1 and 38 M-1.min-1, respectively. These 
data may explain why cisplatin reacts with cellular 
NAT1 despite the presence of theses scavengers at 
high concentrations in cells (around 2 mM). The 
reactive nature of the active-site cysteine residue of 
NAT1 likely accounts for the high reactivity of 
cisplatin for this enzyme and its subsequent 
inactivation. Impairment of caspase 3 and 8 
functions by cisplatin have been shown to rely on a 
similar mechanism (23). Although our data do not 
demonstrate that alteration of NAT1 functions in 
cells contributes to the therapeutic effect of cisplatin, 
our results emphasize the putative link between 
NAT1 and breast cancer.  
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 Our findings must also be discussed in light of 
recent studies aimed at understanding the role of 
NAT1 in breast carcinogenesis. Indeed, the Edith 
Sim’s group (16) has clearly shown that NAT1 could 
be a marker in human estrogen receptor positive 
breast cancer (16). Using mouse Nat2 as a model 
(murine NAT2 is the orthologue of human NAT1), 
these authors confirmed previous studies (25) 
showing that tamoxifen (Fig. 1), an important 
chemotherapeutic drug which is used against breast 
and prostate cancers, impairs the activity of NAT1 
(26). Other estrogenic compounds such as 17-
hydroxy-β-estradiol were also found to inhibit 
murine NAT2 enzyme. The mechanisms underlying 
the impairment of NAT1 by tamoxifen have not been 
reported. The mouse models that are currently being 
studied are likely to provide more information on the 
contribution of NAT1 enzyme to cancer (26). Our 
recent finding that cisplatin inhibits human NAT1 
in breast cancer cells coupled with the recent 
observations that this XME may contribute to 
altered cell growth and may serve as a marker in 
estrogen receptor positive breast cancer, collectively 
emphasize the need to study the mechanisms 
controlling NAT1 functions. 
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